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A B S T R A C T  

 

Osseointegration is the key for long term success of endosseous dental im-

plants. Implant surface properties like roughness, topography, energy and 

composition are the major surface features that influence the process of 

osseointegration. Several methods have been used to optimize implant 

surface roughness to increase surface area thereby improving the process 

of osseointegration. Blasting using alumina and titanium dioxide, acid 

treatment, anodization, and laser peeling are some of the subtractive meth-

ods used to optimize implant surface roughness. Additive methods, on the 

other hand, are used to coat HA onto the surface of endosseous implants 

and these include plasma sprayed HA, vacuum deposition technique, sol-

gel and dip coating method, electrolytic process and nano-HA coating. Re-

cently, biomimetic implant surfaces are being produced with calcium phos-

phate coatings under physiological conditions. These coatings may also act 

as vehicles for osteogenic agents like BMPs, GDFs and biologically active 

drugs like bisphosphonates, gentamicin, tetracycline, etc. Methods used for 

surface modifications of endosseous dental implants are vast and continu-

ously evolving with the recently developed technologies. This article gives 

an overview of various surface modifications and current trends followed 

in the field oral implantology. 
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1 .  I n t r o d u c t i o n  
 

An implant is a biomaterial or a medical device, placed 

intentionally into human body either totally or partial-

ly buried beneath the epithelial surface [1]. Osseointe-

gration of implants is a series of events leading to di-

rect contact of living bone to the implant surface. This 

determines the ultimate success of endosseous im-

plants at the tissue implant interface. Osseointegration 

process is affected by surface characteristics of im-

plant such as roughness, topography, energy and com-

position [2,3,4]. Surface modification of implants is 

essential for seeking ideal osseointegration. Several 

methods are adopted with an aim of optimising the 

roughness and topography of endosseous implant sur-

faces in order to maximize the osseointegration. These 

endosseous implants have various surface characteris-

tics ranging from machined/turned surfaces to more 

roughened surfaces by means of “blasting, acid etch-

ing, coating of ceramic particles or combination of var-

ious techniques” [5].  The goal of all the implant sur-

face modifications is to achieve fine and rapid osseoin-

tegration [6]. Successful osseointegration is associated 

with osteoinduction, osteoconduction and osteogene-

sis [7,8]. Osteoconductive implant surfaces provide 

favorable environment for the bone to grow by acting 

as a scaffold. Osteoconductive surfaces require exist-

ing bone or differentiated mesenchymal cells for en-

hancing the new bone formation. Hydroxyapatite, cal-

cium phosphate coatings on the implant surface are 

osteoconductive in nature. Osteoinductive surfaces 

enhance or induce bone regeneration from existing 

bone with the help of either bone morphogenic pro-

teins (BMPs), growth factors and/or collagen- chi-

tosan polymers. The aim of this review is to provide 

an overview of numerous surface modification tech-

niques and provide an insight of the current trends 

followed in the field of oral implantology to improve 

osseointegration. 

 

2. Methods of implant surface modifica-

tion  

 

Implant surface modifications are categorised into 

subtractive and additive methods. Various surface 

modification methods were enumerated in table 1. 

 

2.1. Subtractive Methods  

 

These methods involve in creating irregularities on 

the surfaces of endosseous implants.  

2.1.1. Sand blasting  
 

The objective of sand blasting is to improve surface 

roughness of the dental implants. This would increase 

the surface area of the implants that results in effective 

osseointegration. Sand blasting is done by subjecting 

the implants to various gritting agents like alumina 

(Al2O3) and titanium oxide (TiO2) at high pressure. The 

efficacy of sandblasting depends on the number and 

size of the particles as well as the pressure and the 

speed of rotations to which implant is submitted [8]. It 

is simple and has no additional interface between im-

plant and the surrounding bone. Blasting procedures 

leave residual particles on the surface of the implant, 

and this could modify the bone-healing process. Any 

sharp edges formed on the surface of implant can ad-

versely affect the adhesion of bone onto the implant. It 

was observed that the sand blasted surfaces allow dif-

ferentiation and proliferation of osteoblasts [9,10]. 

Numerous studies showed that adhesion of fibroblasts 

to blasted surface was difficult [11,12]. Wennerberg A 

et al (1995) reported that greater removal torque 

force was needed for Titanium dioxide blasted im-

plants (35.4 N-cm) compared to titanium turned Im-

plants (29.2 N-cm) placed in the tibia of rabbit [13]. 

This suggests that the blasted implant surfaces en-

hance proper bone formation around them compared 

to turned implants. Similarly, Piatelli A et al (1998) 

observed higher bone to implant contact (BIC) around 

the blasted implants compared to turned implants in 

femoral knee joints of rabbits [14].  

 

Calcium phosphate in the form of hydroxyapatite (HA), 

beta tricalcium phosphate were also used as blasting 

media, and these are called as resorbable blast media 

(RBM). The base of titanium is submitted to blasting, 

followed by a passivity procedure to remove the calci-

um phosphate (CaPO4) and finally, cleaning. The blast 

media is resorbed during these processes, and a sur-

face of pure TiO3 is produced that is free of contami-

nants [6]. 

 

2.1.2. Acid etching  
 

This process was proposed to modify implant surface 

without leaving the residues found after sandblasting 

and for uniform treatment of surface of the implant. 

Etching of implant surface is performed using hydro-

chloric acid (HCl), sulphuric acid (H2SO4), hydrofluoric 

acid (HF), nitric acid (HNO3) individually or in combi-

nations. The acid mixture, etching time, temperature of 

bath affects the rate of etching process. 
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It was reported that the implants etched with HCl and 

H2SO4 exhibited greater removal torque force (20.5 N-

cm) than the turned implants (4.95 N-cm) after 2 

months healing period in the femurs of rabbit [15]. 

Studies also reported that dual etching, specifically the 

combination of HF and HCl, is more beneficial in creat-

ing the rough surfaces on implants [16]. Chi SA et al 

(2003) implanted dual etched and turned implants 

into the tibia of rabbit and observed BIC after 12 

months of placement. They reported greater BIC with 

etched implants (62.5%) compared to turned implants 

(39.5%) [16]. 

 

2.1.3. Sand blasted and acid etched surfaces

(SLA)  

 
This is a combination method in which the implant 

surfaces are treated with blasting followed by acid 

etching process. The standard SLA surface includes 

sandblasting with large grits of 0.25 to 0.5 mm subse-

quent etching with HCl/H2SO4.The resultant surface 

was constituted by uniformly scattered gaps and po-

rosities, and it appeared to be slightly less rough than 

the surfaces subjected to  plasma-spraying, which pre-

sented a deeply irregular texture that provided a less 

favorable environment for cell spreading [17].  

 

Several studies compared the effect of SLA surfaces 

and acid etched surfaces on bone formation around 

the implants [18,19]. It was reported in the literature 

that SLA Implants exhibited greater removal torque 

force (186.8 N-cm) than acid etched implants (95.7 N-

cm) three months after their placement in the minia-

ture pigs [18]. In a human study, implants were placed 

into the palatal bone of the maxilla for orthodontic an- 

chorage and BIC of 76.6% was observed on removal 

after 6 months [19].    

 

2.1.4. Anodization  

 

In this process, implant surfaces are treated in strong 

acids like Phosphoric acid (H3Po4), H2SO4, HNO3 and 

HF at high current density (200 A/m2) or voltage po-

tential (100v). Resultant surfaces produce oxide layer 

with thickness more than 1,000 nm. Microstructure 

and crystallinity of titanium dioxide layer were modi-

fied in this process [20,21]. These surfaces were com-

pared with turned implant surfaces. Six weeks after 

placement in the tibia of rabbit, anodized implants 

showed greater removal torque force (12.9 N -cm) 

than turned surfaces (7.5 N-cm) [22]. Munhoz et al 

(2015) compared the effect of sand blasted - acid 

etched (SLA) and anodized implants in the tibiae of 

rabbits. It was found that SLA surfaces showed greater 

BIC compared to anodized surfaces[23]. 

 

2.1.5. Laser peening  

 

This process uses a high intensity (5-15 GW/cm2) na-

nosecond pulses (10-30 ns) of laser beam to create 

small spherical uniform honeycomb pattern of small 

pores over the surface of implant [6]. Laser peening 

produces a surface with refined grain structures, com-

pressive residual stresses, and increased hardness in 

metallic materials. Micro patterns of 20 µm wide and 7 

µm deep were imprinted on cpTi biomedical implant 

material through laser surface treatment that im-

proves the implant surface corrosion resistance, me-

chanical and fatigue strength. Laser treated implant 

surfaces showed greater removal torque in compari-

Subtractive methods Additive methods Current trends 

 Sand blasting 

 Acid etching 

 SLA surfaces 

 Anodization 

 Laser peening 

 HA Coating techniques 

 Plasma spraying 

 Vacuum deposition 

 Sol gel and dip coating method 

 Electrolytic process 

 Frit enamelling 

 Hot isotonic pressing 

 High velocity oxygen fuel 

spraying 

 Ion associated deposition 

 Sputter coating 

 Photofuctionalization 

 Biomimetic calcium phosphate 

coatings 

 Coating of osteogenic agents like 

BMPs, growth factors 

 Coating of bioactive drugs like 

bisphoshonates, gentamycin 

 Nano titania, nano HA coatings 

Table 1. Various implant surface modification methods 
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son with turned implant surfaces placed in the rabbit 

tibia [24,25]. 

 

2.2. Additive Methods  

 

Additive methods include coating of implants with 

calcium-based compounds. During the process of osse-

ointegration, calcium phosphate released from HA 

coated implant surfaces into peri-implant region, in-

creases the saturation of tissue fluids and precipitates 

a biological apatite layer on the implant surface. This 

layer contains endogenous proteins and acts as a ma-

trix for osteogenic cell growth and attachment [6]. 

Calcium phosphate coated implants showed better 

clinical success rate than uncoated titanium implants 

[26,27].  Different ceramic materials used to coat calci-

um phosphate onto implant surface are HA, tricalcium 

phosphate, fluorapatite, calcium pyrophosphate, brus- 

ite and bioglasses. Various methods used to coat HA 

onto the surface of endosseous implants include plas-

ma sprayed HA, vacuum deposition technique, sol-gel 

and dip coating method, electrolytic process, hot iso-

tonic pressing, high velocity oxygen fuel spraying, frit 

enamelling, ion associated deposition, sputter coating 

and nano-HA coating [28]. 

 

2.2.1. Plasma Sprayed HA  

 

In this process, powdered crystalline HA is introduced 

and melted by a hot, high velocity plasma gas and pro-

pelled onto the implant surface [29]. HA particles un-

dergo partial melting and produces 50µm thick coat-

ing on the surface of implant. The characteristic fea-

tures of plasma sprayed HA are greater surface area of 

bone apposition to the implant, enhancement of bio-

mechanics and initial load bearing capacity of the sys-

tem and increase in the bone penetrations that en-

hances fixation in areas of limited initial bone contact.  

Plasma sprayed HA adherence to titanium is purely 

mechanical and numerous studies reported adhesive 

failure between coatings and implant surfaces [30]. 

 

2.2.2. Vacuum deposition technique  
 
Radiofrequency magnetron sputtering, beam sputter-

ing, pulsed laser deposition are the various techniques 

used for deposition of HA through vacuum deposition 

[28]. Radio frequency magnetron sputtering is done in 

a mix of argon and reactive gases to derive a desired 

HA stoichiometry [31]. In this process, implants are 

mounted in a radio frequency magnetron sputtering  

apparatus with base pressure of 10-6 mb [28]. It allows 

very thin, stable, homogeneous coating on implant sur-

face. Shams Mohammadi et al(2004) investigated long 

term bone response of implants coated with HA using 

radio frequency magnetron sputtering technique and 

observed that  coated implants showed better long-

term bone response and improved bone to implant 

contact [31]. 

 

3. Current trends in implant surface modifi-

cations  

 

3.1. Photofunctionalization  

 

This recent technique involves treatment of implant 

surfaces using UV light to improve physical, mechani-

cal properties and to enhance osseointegration [32]. 

Photofunctionalization improves the biological effects 

of titanium implants by converting the implant surface 

from hydrophobic to hydrophilic and electronegative 

to electro positive. It removes hydrocarbon layer from 

the surface that was formed during aging of implants. 

As a result the attachment, retention, proliferation and 

expression of fundamental phenotypes of osteoblasts 

are remarkably increased [32].  

 

Seinichi Suzuki et al (2013) evaluated the degree and 

rate of implant stability development of photofunction-

alized implants in humans. About 78.0% implant sta-

bility quotient (ISQ) was reported after 6 weeks of im-

plant placement, that was considerably higher than the 

average ISQ of 66%, reported in the literature. This 

indicates that photofunctionalization accelerated and 

enhanced the osseointegration of endosseous dental 

implants [32]. 

 

3.2. Biomimetic Calcium phosphate coatings  
 
Biomimetic method of coating calcium phosphate onto 

implant surface has gained popularity which was de-

veloped by Kokubo et al in 1990 [33].  This original 

technique was refined by several investigators[34-41]. 

Biomimetic technique involves immersion of pretreat-

ed implant into a supersaturated solution of calcium 

phosphate under physiological conditions of 370C tem-

perature and pH of 7.4 [42 – 47]. The advantages of 

this technique are simplicity, economical, can be ap-

plied on heat- sensitive, non-conducive porous materi-

als with complex geometry. This biomimetic calcium 

phosphate layer is an excellent media to act as a vehi-

cle for osteogenic agents. These agents are precipitat-

ed into the latticework of calcium phosphate for their 

slow and sustained release. BMP, BMP-2, growth and 
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differentiating factors (GDF) are some of the osteogen-

ic agents that can be incorporated into biomimetic 

calcium phosphate coatings. Thickness of these coat-

ings varies between 10-50 µm. The osteoinductive 

nature of BMPs was first reported by Urist in mid 

1960s [48]. BMPs act on undifferentiated mesenchy-

mal cells and induce them to differentiate into osteo-

blasts and chondroblasts[49].  Conventional methods 

like adsorption [50], binding to biofunctional proteins 

[51], chemical treatments [52] deposit osteogenic 

agents superficially on the surface of coatings. These 

superficial coatings released rapidly upon exposure to 

biological environment. Thus, osteogenic efficiency of 

these agents is short lived. Unlike conventional tech-

nique, in this biomimetic method osteogenic mole-

cules are incorporated into the lattice of calcium phos-

phate coatings and are released at a slower and study 

rate, increasing the bioavailability of the agents for 

longer period of time [53]. BMPs, GDFs, transforming 

growth factor (TGF- b) are some of the osteogenic 

agents incorporated into the lattice of biomimetic cal-

cium phosphate coatings. Various materials used to 

serve as carrier for BMP -2, including collagen, demin-

eralized bone matrix, synthetic and natural ceramic 

materials and poly glycolic acid [54-60]. 

 

Liu et al(2007) conducted a study on incorporating 

the osteogenic agents onto implant surfaces and con-

cluded that BMP-2 can be incorporated into biomimet-

ic coatings and it retained its biological activity for 

longer period after implant placement. Another study 

proved that dental implants coated with BMP-2 incor-

porated calcium phosphate showed rapid osseointe-

gration in adult miniature pigs than the uncoated im-

plants [61]. 

 

Pharmacological agents like bisphosphonates are 

coated on implant surface to improve bone density in 

highly cancellous bone[62]. Investigations were car-

ried out to study the affect of recombinant human 

BMP (rh BMP-2) coating on implant surface in animal 

models. It was proved that rh BMP-2 promotes initial 

integration of dental implants [63, 64]. 

 

3.2.3. Nano-coatings  

 

Recently, nano-dentistry has focused on the delivery of 

molecules that promote hard tissue remineralization. 

In this regard, nano particles have shown a strong in-

fluence on the host response at both cellular and tissue 

levels. This made their use more popular for modifying 

dental implant surfaces. Various methods have been 

developed to provide nano textured thin film biocom-

patible coatings on implant surfaces. They include sol 

gel method, pulsed laser deposition, electrophoretic 

deposition, ion beam assisted deposition and sputter 

coating [65]. 

 

Nano-titania and nano HA coatings have gained popu-

larity and are studied extensively among the nano 

coated materials because of their biocompatibility, 

increased surface area to volume ratio and especially 

the composition of HA is similar to that of bone [66]. 

Various commercially available implant systems and 

their surface modification methods are given in table2. 

 

 

4. Conclusion  

 

The goal of modern implantology is rapid peri-implant 

bone healing which results in rapid osseointegration 

allowing early implant loading. Surface texture of im-

plants plays a significant role in osseointegration. Nu-

merous surface modification methods are continuous-

ly evolving with the development of newer techniques 

and technologies, which are aiming to make rapid and 

more predictable osseointegration. Recently, biologi-

cally active drugs (bisphosphonates, tetracyclins) and 

osteogenic agents (BMPs, PDGFs, IGFs) were also coat-

ed on implant surfaces for faster healing and to ensure 

Implant system Surface modification 

Nobel Biocare, Switzerland Phosphate enriched titanium oxide 

Straumann, Switzerland SLA surfaces 

Osstem, South Korea Resorbable blast media (RBM) using Calcium phosphate hydroxyappatite 

Pitt-easy, Germany Titanium plasma spray 

Biohorizone, Alabama Laser peening 

Adin, Israel SLA, Resorbable blast media (RBM) using Calcium phosphate 

Table 2. Various dental implant systems and their surface modifications. 
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immediate loading of implants. Clinicians should have 

sound knowledge on surface modification methods of 

dental implants for careful and suitable selection of 

implant system to ensure long term success of implant 

therapy.  
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