Advances in alginate impression materials: a review

Sahithi Alaghari¹,*, Surekha Velagala¹, Rama Krishna Alla², Ramaraju AV³

¹Undergraduate student, Vishnu Dental College, Bhimavaram, West Godavari, 534202, Andhra Pradesh, India.
²Assistant Professor, Department of Dental Materials, Vishnu Dental College, Bimavaram, West Godavari, 534202, Andhra Pradesh, India.
³Professor, Department of Prosthodontics, Vishnu Dental College, Bhimavaram, West Godavari, 534202, Andhra Pradesh, India.

Abstract

Alginate is an irreversible elastic hydrocolloid which has various applications in dentistry. The applications of alginates include making impressions of edentulous and partially edentulous arches, duplication of casts, and for making study models. Alginates possesses numerous vital properties such as hydrophilicity, ability to record finer details, elastic recovery and inexpensive; makes this material widely used in dentistry. Though alginate is the most commonly used impression material, it has some inherent disadvantages. Alginates contain low-density fine filler particles, which may arise in the form of dust and inhalation these dust particles may cause respiratory problems. Further, they are highly dimensionally unstable due to syneresis & imbibition. Besides, alginates do not adhere to non-perforated trays, low viscosity resulting in gag reflex in some patients, and the inability to identify the correct consistency to load. Several modifications were made in the composition of conventional alginites to address their shortcomings. This article reviewed various recent advances in the alginate impression materials and their performance.

Keywords

Alginate
Dust-free alginates
Chromatic alginate
Self-disinfectant alginates
Tray adhesives
Nanoparticles

1. Introduction

Alginate is an elastic and irreversible hydrocolloid impression material, which has been using in dentistry for many years. Alginate impression materials is essentially an alginic acid, which is obtained from brown seaweed (marine plant). Alginate is a high molecular weight linear polymer of anyhydro-D-mannuronic acid [1]. Alginate is a linear acidic polysaccharide comprising β-d-mannuronate (M) and its C-5 epimer α-l-guluronate (G). In alginate polymers, the residues are arranged in a block structure of a homopolymer (polymannuronate (PM) or polyguluronate (PG)) or heteropolymer (a mixed sequence of these residues). The properties of alginate depend on the degree of polymerization and the ratio of mannuronan (M) and Guluronan blocks (G). As shown in figure 1, the mannuronan chains are stretched
and flat, which are more flexible compared to gulur
ronan blocks. Guluronan blocks react with calcium
and produce a strong and brittle gel, whereas mannu-
ronan block produces weaker and elastic [2,3].

Alginate impression material contains soluble alginic
acid as a principle reactive ingredient. The average
molecular weight of alginic acid is in the range of
32000 – 200,000. The molecular weight of the alginic
acid influence the viscosity of the sol. The more the
molecular weight more will be the viscosity of the sol
and vice versa [3]. The composition of alginate im-
pression materials is detailed in table 1.

Alginate is widely used, though this material is not
ideal in every aspect, for making edentulous and par-
tially edentulous impressions for the fabrication of
complete and removable partial dentures respectively.
Alginate impression materials are easy to use, records
fine details, and cost-effective compared to its coun-
terpart elastic impression materials [1].

However, alginate impression materials contain fine
diatomaceous earth fillers particles. These fillers rise
in the form of dust on the opening of the alginate stor-
age container’s lid due to their lack of density. Algi-
nates are highly hydrophilic tend to absorb water or
moisture, leading to dimensional changes. Further,
their low viscosity may result in the gag reflex in pa-
tients. It is necessary to use perforated trays to make
impressions with these materials as they do not ad-
here well to the impression trays [1-4].

Table 1. Composition of alginate impression material

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Ingredient</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Soluble alginate</td>
<td>Main reactive ingredient.</td>
</tr>
<tr>
<td>2.</td>
<td>Calcium sulfate dihydratelate</td>
<td>Reactor</td>
</tr>
<tr>
<td>3.</td>
<td>Trisodium phosphate</td>
<td>Retarder</td>
</tr>
<tr>
<td>4.</td>
<td>Diatomaceous earth and Zinc Oxide</td>
<td>Fillers</td>
</tr>
<tr>
<td>5.</td>
<td>Potassium-titanium fluoride</td>
<td>Gypsum hardener</td>
</tr>
<tr>
<td>6.</td>
<td>Flavoring agents</td>
<td>Provide appropriate taste</td>
</tr>
<tr>
<td>7.</td>
<td>Colour pigments</td>
<td>Provide characteristic colour.</td>
</tr>
</tbody>
</table>

2. Evolutionary changes in the alginate impression material

2.1 Dustless alginates

These materials were developed to eradicate silicosis,
which is caused by the presence of diatomaceous earth
in the form of fillers in conventional alginate impres-
sion materials. These fillers are low-density siliceous
fibers with dimensions of 3-20 µm and more potential
carcinogens. These fibers will raise in the form of dust
during usage and inhalation of those fibers may cause
respiratory problems [1].
An attempt was made to increase the density of siliceous fibers by coating them with dedusting agents like glycerin, glycol, polyethylene glycol, and polypropylene glycol [1,3]. Recently, sepiolite (natural mineral fiber-containing magnesium silicate -20%) was added to the alginate materials that helps in holding alginate particles together to prevent the leaping of dust particles. This reduced the dust generation from alginate impression materials during dispensation. Numerous manufacturers also incorporated tetrafluoroethylene to avoid the dust particles raising by forming the cobweb during mixing [5].

2.2 Alginate in the form of two-paste system

Alginates were developed in two-paste systems to prevent the contamination of powder, and inconsistency in dispensing a certain amount of powder. It consists of base paste and catalyst paste. The base paste contains soluble alginate, water, and fillers, whereas catalyst paste contains calcium salts, viscous liquids like liquid paraffin and magnesium hydroxide as a pH stabilizer [6-8].

2.3 Chromatic alginates (Alginates with color indicators)

The problem observed among some of the undergraduate students is difficulty in identifying the ideal consistency of alginate material during manipulation. Various color indicators were added to the alginate impression materials to identify the different stages of manipulation. These color indicators change the color of the alginate mix as setting reaction taking place due to the change in the pH [1,3,9]. This change in the color of the alginate mix facilitates identification of the ideal consistency to load it into the tray and make accurate impressions.

2.4 Self-disinfected alginates

Disinfection of impression is an essential and necessary procedure in dental practice to prevent cross-infection and safety of patients, dentists, and dental personnel. Disinfection of impression should prevent spreading of infection from dental clinic to dental laboratory technician, other patients, and dental auxiliaries. Mantena SR et al. (2019) reviewed various methods employed to disinfect dental impressions. It was reported in the literature that the conventional disinfection procedures such as immersion and spraying methods which may lead to the unwanted dimensional changes in the alginate impression as they were hydrophilic [10].

Numerous researchers developed alginate impression materials by incorporating disinfectant agents in their compositions. The disinfectant materials incorporated include quaternary ammonium compounds, chlorhexidine, bisquandine compounds, chlorhexidine, didecyldimethy ammonium chloride [11-14]. Addition of disinfecting agents into the impression materials eliminates separate disinfection of the impression immediately after removing it from the patient’s mouth.

Recently, researchers have experimented incorporating different antimicrobial nanoparticles into alginate impression materials. Several studies have reported that the addition of silver nanoparticles is more effective against S. aureus, Lactobacillus acidophilus, Actinomyces viscosus, and Pseudomonas aeruginosa [15-17]. Particle size and concentration of the silver nanoparticles are the essential factors that play a significant role in antimicrobial activity in alginate impression materials. It was suggested that the silver nanoparticles with the average particle size of 80–100 nm impart superior antimicrobial property to the alginate in a concentration-dependent manner than the finer nanoparticles [15,16]. It was also reported that the flow, gelation time and strength of alginate impression materials were adversely affected by the incorporation of greater than 1.0 wt% of silver nanoparticles [15,16]. Several researchers also experimented the antimicrobial efficacy of Zinc oxide and Copper oxide nanoparticles in alginate impression materials. They reported that these nanoparticles were also proved to be effective self-disinfecting agents for alginate impression materials with no adverse effect on physical and mechanical properties [18].

2.5 Extended pour alginates

Due to syneresis and imbibition, it is unable to store the alginate impression for a longer duration. Attempts made by the manufacturers to address this problem led to the development of two new alginate materials such as CAVEX Color Change (Darby Dental Supply, USA) and Extend a Pour (Dux Dental Products). Cavex color change material can be preserved for about 100hrs and extend a pour can be preserved up to 4 weeks [5,19-22].
2.6 Alginate with polyacrylamide incorporation

On mixing with water, conventional alginates may tend to form a grainy mass with lumps of unmixed material as the water does not wet the powder easily. A thickening and stabilizing agent such as 0.01-0.25wt% polyacrylamide (molecular weight 200,000 to 6,000,000) were incorporated into the conventional alginates resulted in improving the mixing characteristics, and the formation of smooth alginate sol with water [3, 23, 24].

2.7 Storage medium for alginates

Traditional alginates, being hydrocolloid, are dimensionally unstable due to syneresis and imbibition. Hence, it is necessary to pour the gypsum cast as early as possible after the impression is removed from the mouth [3,25]. A storage solution is now available to store the alginate impressions without any dimensional changes. It was reported that storage of alginate impression in that solution did not show significant dimensional changes up to 100 hrs [3,26].

2.8 To improve the wettability of alginate powder by water

In general, water has less ability to penetrate the conventional alginate powders during mixing. Hence, the formation of a smooth and uniform mix requires longer mixing time with a resultant decrease in the working time. To address this, alginate impression materials were incorporated with hydrophobic materials and surfactants such as polyoxyethylene alkyl phenyl ether, Polyoxyethylene/polyoxypropylene alkyl ether, polyoxyethylene alkyl ether. These materials increased the permeation of water into the powder particles that resulted in the formation of sol rapidly with sufficient fluidity [3, 5, 27,28].

2.8 Other modifications

The other disadvantage with the alginate impression materials is its shorter mixing time. Hence, the operator should be skilled enough to mix the alginate material within the shorter mixing time to obtain homogeneous consistency and make an accurate impression. Mechanical or automatic mixing devices were developed to address this problem. Mechanical mixing devices give more accurate consistency within a shorter time compared to hand mixing [29,30].

Flavouring agent such as cinnamon, strawberry, peppermint, watermelon, cherry, orange, and spearmint are added to the conventional alginates to improve the patient acceptance and to make the material more pleasant during use in the mouth [3,31].

Recently, tray adhesives were developed for alginate impression materials to accomplish better retention with the non-perforated metal or plastic trays. These tray adhesives are dispensed as liquids which contain polyamide or diethylene triamine polymer, ester gum and rosin in isopropyl alcohol or an amalgamation of isopropyl alcohol with ethyl acetate. [3,5,32,33].

Conclusion

Alginate impression material is widely used for making the primary impression of edentulous and partially edentulous patients. The recent modifications in the composition of alginate impression material led to the enhancement of handling and clinical performance compared to unmodified alginate.

References


