Section Review Articles

A review on acceptability of denture polymers having gold and silver nanoparticles

M. A. Eswaran
Ponsekar Abraham A
A. Afritha
S. Lubnaz
Suprabha Rathee
T Ranjani



In dentistry, polymethyl methacrylate (PMMA) is commonly used as a base material for dentures. PMMA has been widely used in a range of dental applications because of its specific features, including its low density, aesthetics, cost-effectiveness, ease of manipulation, and flexible physical and mechanical characteristics. Despite having many advantageous qualities, it has a lot of cons like weak flexural strength, poor wear resistance, polymerization shrinkage, and poor durability etc., The emergence of nanotechnology has allowed for the improvement of the aforementioned drawbacks through the use of different nanoparticles. Silver nanoparticles have been used in dentistry due to their antimicrobial, and antifungal properties. They also enhance the mechanical properties of materials leading to improved outcomes. Gold nanoparticles are available in different sizes and concentrations to exhibit their beneficial outcomes. This review aimed to discuss the properties of silver and gold nanoparticles, their form of incorporation, benefits, acceptance and their clinical significance when added with denture polymers.


Author Biographies

M. A. Eswaran, Thai Moogambigai Dental College & Hospital

Professor, Department of Prosthodontics, Thai Moogambigai Dental College & Hospital, Dr. M. G. R. Educational & Research Institute, Chennai, Tamilnadu, India.

Ponsekar Abraham A, Thai Moogambigai Dental College & Hospital

Professor and Head, Department of Prosthodontics, Thai Moogambigai Dental College & Hospital, Dr. M. G. R. Educational & Research Institute, Chennai, Tamilnadu, India.

A. Afritha , Thai Moogambigai Dental College & Hospital

Junior Resident, Thai Moogambigai Dental College & Hospital, Dr. M. G. R. Educational & Research Institute, Chennai, Tamilnadu.

S. Lubnaz, Thai Moogambigai Dental College & Hospital

Junior Resident, Thai Moogambigai Dental College & Hospital, Dr. M. G. R. Educational & Research Institute, Chennai, Tamilnadu, India.

Suprabha Rathee, Inderprastha Dental College

Professor and Head, Undergraduate section, Department of prosthodontics, Inderprastha Dental College, Delhi, India.

T Ranjani, Thai Moogambigai Dental College & Hospital

Assistant Professor, Department of Prosthodontics, Thai Moogambigai Dental College & Hospital, Dr. M. G. R. Educational & Research Institute, Chennai, Tamilnadu, India. 

DOI: 10.37983/IJDM.2022.4402
Published: 2022-12-31
How to Cite
Eswaran, M. A., Abraham A, P., Afritha , A., Lubnaz, S., Rathee, S., & Ranjani, T. (2022). A review on acceptability of denture polymers having gold and silver nanoparticles. International Journal of Dental Materials, 4(4), 82-88.


  1. Song W, Ge S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules. 2019 Mar 15;24(6):1033.
  2. Vasiliu S, Racovita S, Gugoasa IA, Lungan MA, Popa M, Desbrieres J. The Benefits of Smart Nanoparticles in Dental Applications. Int J Mol Sci. 2021 Mar 4;22(5):2585.
  3. Hassan M., Asghar M., Din S.U., Zafar M.S. Thermoset Polymethacrylate-Based Materials for Dental Applications. Elsevier; Amsterdam, The Netherlands: 2019. Chapter 8; pp. 273–308.
  4. Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel). 2020 Oct 8;12(10):2299.
  5. Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine. 2007;2(2):129-41.
  6. Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué FO. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry. 2012;84(2): 377-410.
  7. Simakov SK. Nano- and micron-sized diamond genesis in nature: An overview. Geoscience Frontiers. 2018;9(6): 04.
  8. Simakov S K, Kouchi A, Scribano V, Kimura Y, Hama T, Suzuki N, Saito H, Yoshizawa T. Nanodiamond Finding in the Hyblean Shallow Mantle Xenoliths. Scientific Reports. 2015;5(1): 1-8.
  9. Faraday Michael. Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond. 1857;147: 145 181.
  10. Granqvist C, Buhrman R, Wyns J, Sievers A. Far-Infrared Absorption in Ultrafine Al Particles. Physical Review Letters. 1976;37(10): 625-629.
  11. Hayashi C, Uyeda R, Tasaki A. Ultra-fine particles: exploratory science and technology (1997 Translation of the Japan report of the related ERATO Project. 1981 86). Noyes Publications.
  12. Roco Mihail. National Nanotechnology Initiative - Past, Present, Future. Scientific American. 2006;295(2):39.
  13. Sajanlal, Panikkanvalappil R, Sreeprasad Theruvakkattil S, Samal Akshaya K, Pradeep Thalappil. Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Reviews. 2011;2(1): 5883.
  14. Graf C, Vossen DL, Imhof A, van Blaaderen A. A general method to coat colloidal particles with Silica. Langmuir. 2003;19(17): 6693–6700.
  15. Li L, Hu J, Yang W, Alivisatos AP. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001;1(7):349–351.
  16. Silver nanoparticle (2022) Wikipedia. Wikimedia Foundation. Available at: (Accessed: December 14, 2022).
  17. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci. 2016;17(9):1534.
  18. Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014;32(4):711–726.
  19. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 2011;9(1):e30.
  20. Brennan SA, Fhoghlú CN, Devitt BM, O’mahony FJ, Brabazon D, Walsh A. Silver nanoparticles and their orthopaedic applications. Bone Jt. J. 2015;97(5):582–589.
  21. Gold Nanoparticle - an overview | ScienceDirect Topics. Available at: (Accessed: December 14, 2022).
  22. Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae. 2011;3(2):34-55. ttps://
  23. Faulk WP, Taylor GM. An immunocolloid method for the electron microscope. Immunochemistry. 1971;8(11):1081-3.
  24. Colloidal Gold (2022) Wikipedia. Wikimedia Foundation. Available at: (Accessed: December 14, 2022).
  25. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11: 55–75.
  26. Perrault SD, Chan WC. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. Journal of the American Chemical Society. 2009;131(47): 17042–3.
  27. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of Thiolderivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. Chem. Commun. 1994;(7):801–802.
  28. Martin MN, Basham JI, Chando P, Eah SK. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir. 2010;26(10): 7410–7.
  29. Navarro JR, Lerouge F, Cepraga C, Micouin G, Favier A, Chateau D, et al. Nanocarriers with ultrahigh chromophore loading for fluorescence bio-imaging and photodynamic therapy. Biomaterials. 2013;34(33):8344–51.
  30. Sakai T, Alexandridis P. Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. The Journal of Physical Chemistry B. 2005;109 (16): 7766–77.
  31. Baigent CL, Müller G. A colloidal gold prepared using ultrasonics. Experientia. 1980;36 (4):472–473.
  32. Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, Dubey SK, Kesharwani P. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020;586:119596.
  33. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 2008;101(2):239–253.
  34. Majeed Khan MA, Kumar S, Ahamed M, Alrokayan SA, Alsalhi MS. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett. 2011;6(1):434.
  35. Saha, Dhriti Ranjan & Mandal Bera, Amrita & Mitra, Sreemanta & Mada, Mykanth & Boughton, Philip & Bandyopadhyay, Sri & Chkaravorty, Dipankar. (2013). Nanoindentation Studies on Silver Nanoparticles. AIP Conference Proceedings. 1536.
  36. Su CH, Chen HL, Ju SP. et al. The Mechanical Behaviors of Polyethylene/Silver Nanoparticle Composites: an Insight from Molecular Dynamics study. Sci Rep. 2020;10:7600.
  37. Ratan Das, Siddarth S. Nath, Dipankar Chakdar, Gautam Gope & Ramendhu Bhattacharjee. Synthesis of silver nanoparticles and their optical properties, Journal of Experimental Nanoscience. 2010;5(4):357-362,
  38. Rasmagin, S.I., Apresyan, L.A. Analysis of the Optical Properties of Silver Nanoparticles. Opt. Spectrosc. 2020;128(3):327–330.
  39. Gosens I, Post JA, de la Fonteyne LJ, Jansen EH, Geus JW, Cassee FR, de Jong WH. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol. 2010;7(1):37.
  40. Elzey, Sherrie & Grassian, Vicki. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. Journal of Nanoparticle Research. 2010;12(5):1945-1958.
  41. Lu JX, Tupper C, Murray J. Biochemistry, Dissolution and Solubility. [Updated 2021 Sep 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan
  42. Li L, Zhu YJ. High chemical reactivity of silver nanoparticles toward hydrochloric acid. J Colloid Interface Sci. 2006;303(2):415-8.
  43. Alissawi, N., Zaporojtchenko, V., Strunskus, T. et al. Tuning of the ion release properties of silver nanoparticles buried under a hydrophobic polymer barrier. J Nanopart Res 2012;14(7):1-2.
  44. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385-406.
  45. Bangera MK, Kotian R, Madhyastha P. Effects of silver nanoparticle-based antimicrobial formulations on the properties of denture polymer: A systematic review and meta-analysis of in vitro studies. J Prosthet Dent. 2021:S0022-3913(21)00275-4.
  46. Kurt A, Erkose-Genc G, Uzun M, Emrence Z, Ustek D, Isik-Ozkol G. The antifungal activity and cytotoxicity of silver containing denture base material. Niger J Clin Pract. 2017;20(3):290-295.
  47. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater. 2010;22(16):1805-25.
  48. Harikrishnan, S., Navaneethan, R., Rajeshkumar, S. Antibacterial activity and cytotoxic effect of bisphosphonate conjugated gold nanoparticle synthesized using asparagus racemosus root extract. International Journal of Health Sciences. 2022;6(S8):125–137.
  49. Anderson ML, Morris CA, Stroud RM, Merzbacher CI, Rolison DR. Colloidal Gold Aerogels: Preparation, Properties, and Characterization. Langmuir. 1999;15(3): 674–681.
  50. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110(14):7238-48.
  51. nanoComposix Gold nanoparticles: Optical properties, nanoComposix. Available at: (Accessed: December 14, 2022).
  52. Ahmad T, Wani IA, Lone IH, Ganguly A, Manzoor N, Ahmad A, Ahmed J, AlShihri AS. Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater. Res.Bull. 2013;48:12–20.
  53. Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, Gorain B, Khurana S, Kesharwani P. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today. 2019 Jan;24(1):85-98.
  54. Wani IA, Ahmad T, Manzoor N. Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf. B. Biointerfaces. 2013;101:162–70.
  55. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33(7):2327–2333.
  56. Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D, Feng L. The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int J Mol Sci. 2020;3;21(7):2480.
  57. Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 2012;41(7):2849–2866.
  58. Hainfeld J. A small gold-conjugated antibody label: Improved resolution for electron microscopy. Science. 1987;236(4800):450–453.
  59. Lin Y, Ren J, Qu X. Nano-Gold as Artificial Enzymes: Hidden Talents. Adv. Mater. 2014;26(25):4200–4217.
  60. Xue Y, Li X, Li H. et al. Quantifying thiol–gold interactions towards the efficient strength control. Nat Commun. 2014;5(1):1-9.
  61. Suhani MF, B?ciu? G, B?ciu? M, ?uhani R, Bran S. Current perspectives regarding the application and incorporation of silver nanoparticles into dental biomaterials. Clujul Med. 2018;91(3):274-279.
  62. Su Chen, Huang Kun, Li Hao-Hong, Lu You-Guang, Zheng Dali. Antibacterial Properties of Functionalized Gold Nanoparticles and Their Application in Oral Biology. Journal of Nanomaterials. 2020. 1-13.
  63. Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, Cajero-Juárez M, Castaño VM. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine. 2012;7:4777–4786.
  64. Sivakumar I, Arunachalam KS, Sajjan S, Ramaraju AV, Rao B, Kamaraj B. Incorporation of antimicrobial macromolecules in acrylic denture base resins: a research composition and update. J Prosthodont 2014;23(4):284–90.
  65. Diaconu-Popa, Diana & Vitalariu, Anca Mihaela & Tatarciuc, Monica & Munteanu, Florin. Effect of silver nanoparticles incorporation in dental resins on stress distribution Finite Element Analysis. Revista de Chimie -Bucharest. 2016; 67. 1571-1574.
  66. Ahmed MA, Ebrahim MI. Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World J Nano Sci Eng, 2014;4: 50-57.
  67. Mallineni SK, Nuvvula S, Matinlinna JP, You CK, King NM. Biocompatibility of various dental materials in contemporary dentistry: a narrative insight J Invest Clin Dent. 2013;4(1):9-19.
  68. Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomed. 2017;12:3801-3812.
  69. Ghaffari T, Hamedirad F, Ezzati B. In vitro comparison of compressive and tensile strengths of acrylic resins reinforced by silver nanoparticles at 2% and 0.2% concentrations. J Dent Res Dent Clin Dent Prospects. 2014;8(4):204–209.
  70. Hamedi-Rad F, Ghaffari T, Rezaii F, Ramazani A. Effect of nanosilver on thermal and mechanical properties of acrylic base complete dentures. J Dent (Tehran) 2014;11(5):495–505.
  71. Sodagar A, Kassaee MZ, Akhavan A, Javadi N, Arab S, Kharazifard MJ. Effect of silver nano particles on flexural strength of acrylic resins. J Prosthodont Res. 2012;56(2):120–124.
  72. Alla RK, Swamy KR, Vyas R, Konakanchi A, Guduri V, Gadde P. Influence of silver nanoparticles incorporation on flexural strength of heat-cure acrylic denture base resin materials. Annual Research & Review in Biology. 2017;17(4):1-8.
  73. Alla RK, Guduri V, Tiruveedula NB, KN RS, Vyas R. Effect of silver nanoparticles incorporation on microhardness of Heat-cure denture base resins. Int J Dent Mater. 2020;2(4):103-10.
  74. Kassaee MZ, Akhavan A, Sheikh N, Sodagar A. Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J App Polymer Sci. 2008;110(3):1699–1703.
  75. Chladek G, Kasperski J, Barszczewska-Rybarek I, Zmudzki J. Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int J Mol Sci. 2013;14(1):563–574.
  76. Juliana Mattos Corrêa, Matsuyoshi Mori, Heloísa Lajas Sanches, Adriana Dibo da Cruz, Edgard Poiate, Isis Andréa Venturini Pola Poiate, Silver Nanoparticles in Dental Biomaterials, International Journal of Biomaterials, vol. 2015, Article ID 485275.
  77. Alla RK, Vineeth G, Kandi V, Swamy KNR, Vyas R, Narasimha Rao G. Evaluation of the antimicrobial activity of heat-cure denture base resin materials incorporated with silver nanoparticles. Int J Dent Mater 2019;1(2):40-47.
  78. Nam KY, Lee C-H, Lee CJ. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology. 2012;29(2):413–419.
  79. Ki Young Nam. Characterization and antifungal activity of the modified PMMA denture base acrylic: Nanocomposites impregnated with gold, platinum, and silver nanoparticles. In: Alexandru Grumezescu, editor. Nanobiomaterials in Dentistry. Applications of Nanobiomaterials. Elsevier; 2016, p. 323-4.
  80. Russo T, Gloria A, Santis R de, et al. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. Bioact Mater 2017;2(3): 156–61.
  81. Tijana A, Valentina V, Nataša T, Miloš HM, Atlagi? Suzana G, Milica B, Yoshiyuki H, Hironori S, Ivani? A, Rebeka R. Mechanical properties of new denture base material modified with gold nanoparticles. J Prosthodont Res. 2021;65(2):155-161.