Section Original Articles

In vitro hydroxyapatite formation of a tetracalcium phosphate and anhydrous dicalcium phosphate based dentine desensitiser: TRIS buffer vs artificial saliva.


Tomas Duminis
Saroash Shahid

##plugins.themes.academic_pro.article.main##

Abstract

Background: Calcium phosphates (CPs) form hydroxyapatite (HA) in physiological solutions. These are commonly used to treat dentine hypersensitivity (DH) as they mimic the mineral composition of the natural tooth.


Aim: The present study aims to characterise the apatite formation ability of a commercially available calcium phosphate TeethmateTM (TM) in physiological-like media.


Materials and Methods: In this study, 4mm (D) x 6mm (L) cylindrical samples of TM were produced and immersed in tris(hydroxymethyl)aminomethane (TRIS) buffer (pH: 7.3) and artificial saliva (AS) (pH: 6.5) for up to 24 hours. This was followed by characterisation of the samples after immersion using 31P magic angle - nuclear magnetic resonance spectroscopy (MAS-NMR), X-ray powder diffraction (XRD) and dentine treated with the material using scanning electron microscopy (SEM).


Results: 31P MAS-NMR and XRD analyses revealed that samples immersed in TRIS buffer solution formed hydroxyapatite within approximately 6 hours of immersion. This change was observed at around 12 hours for samples soaked in AS.  The pH of the immersion media increased with increasing immersion time. SEM analysis showed a transitional phase formation of structures exhibiting plate-like morphology.


Conclusion: This study shows that TM converts to HA in vitro rapidly and provides an effective option for the treatment of dentine hypersensitivity.

##plugins.themes.academic_pro.article.details##

Author Biographies

Tomas Duminis, Queen Mary University of London

Centre for Oral Bioengineering, Institute of Dentistry, Queen Mary University of London, United Kingdom.

Saroash Shahid, Institute of Dentistry, Queen Mary University of London

Centre for Oral Bioengineering, Institute of Dentistry, Queen Mary University of London, United Kingdom.

CITATION
DOI: 10.37983/IJDM.2021.3302
Published: 2021-08-01
How to Cite
Duminis, T., & Shahid, S. (2021). In vitro hydroxyapatite formation of a tetracalcium phosphate and anhydrous dicalcium phosphate based dentine desensitiser: TRIS buffer vs artificial saliva. International Journal of Dental Materials, 3(3), 76-83. https://doi.org/10.37983/IJDM.2021.3302

References

  1. Bartold PM. Dentinal hypersensitivity: a review. Aust Dent J 2006; 51(3):212-8; quiz 276. https://doi.org/10.1111/j.1834-7819.2006.tb00431.x
  2. Love RM, Jenkinson HF. Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med. 2002;13(2):171-83.https://doi.org/10.1177/154411130201300207
  3. Frank RM. Attachment sites between the odontoblast process and the intradentinal nerve fibre. Arch Oral Biol. 1968; 13(7): 33 - IN39. https://doi.org/10.1016/0003-9969(68)90104-0
  4. Frank RM, Steuer P. Transmission electron microscopy of the human odontoblast process in peripheral root dentine. Arch Oral Biol. 1988; 33(2):91-98. https://doi.org/10.1016/0003-9969(88)90051-9
  5. Brannstrom M. The hydrodynamics of the dentine. Its possible relationship to dentinal pain. Int Dent J. 1972; 22:219-227.
  6. Orchardson R, Gillam DG. Managing dentin hypersensitivity. J Am Dent Assoc. 2006; 137(7): 990-8; quiz 1028-9. https://doi.org/10.14219/jada.archive.2006.0321
  7. Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Materials Today. 2016; 19(2):69-87. https://doi.org/10.1016/j.mattod.2015.10.008
  8. Hilgenstock G. Eine neue Verbindung von P2O5 und CaO. Stahl und Eisen 1883; 3(498): 13.
  9. Zhou J, Chiba A, Scheffel DL, Hebling J, Agee K, Niu LN, Tay FR, Pashley DH. Effects of a Dicalcium and Tetracalcium Phosphate-Based Desensitizer on In Vitro Dentin Permeability. PLoS One 2016; 11(6):e0158400. https://doi.org/10.1371/journal.pone.0158400
  10. Ishihata H, Kanehira M, Finger W, Takahashi H, Tomita M, Sasaki K. Effect of two desensitizing agents on dentin permeability in vitro. J Appl Oral Sci. 2017;25(1):34-41. https://doi.org/10.1590/1678-77572016-0228
  11. Chow LC. Solubility of Calcium Phosphates. Monogr Oral Sci. 2001; 18:94-111. https://doi.org/10.1159/000061650
  12. Habraken WJ, Tao J, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun. 2013; 4:1507. https://doi.org/10.1038/ncomms2490
  13. Schroeder HE, Bambauer HU. Stages of calcium phosphate crystallisation during calculus formation. Arch Oral Biol. 1966; 11(1):1-14. https://doi.org/10.1016/0003-9969(66)90112-9
  14. Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomater. 2005; 26(10):1097-108. https://doi.org/10.1016/j.biomaterials.2004.05.034
  15. Tsai TWT, Chan JCC. Chapter 1 - Recent Progress in the Solid-State NMR Studies of Biomineralization. In Annual Reports on NMR Spectroscopy, Webb GA., Ed. Academic Press: 2011; Vol. 73, pp 1-61. https://doi.org/10.1016/B978-0-08-097074-5.00001-3
  16. Tseng YH, Mou CY, Chan JCC. Solid-State NMR Study of the Transformation of Octacalcium Phosphate to Hydroxyapatite:? A Mechanistic Model for Central Dark Line Formation. J Am Chem Soc. 2006; 128(21): 6909-6918. https://doi.org/10.1021/ja060336u
  17. Elliott JC, Chapter 1 - General Chemistry of the Calcium Orthophosphates. In Studies in Inorganic Chemistry, Elliott JC., Ed. Elsevier: 1994; Vol. 18, pp 1-62. https://doi.org/10.1016/B978-0-444-81582-8.50006-7
  18. Bingel L, Groh D, Karpukhina N, Brauer DS. Influence of dissolution medium pH on ion release and apatite formation of Bioglass® 45S5. Materials Letters. 2015; 143: 279-282. https://doi.org/10.1016/j.matlet.2014.12.124
  19. Mneimne M, Hill RG, Bushby AJ, Brauer DS. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomaterialia. 2011; 7 (4): 1827-1834. https://doi.org/10.1016/j.actbio.2010.11.037
  20. Tas AC, Aldinger F. Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4. J Mater Sci: Mater Med. 2005; 16(2): 167-174. https://doi.org/10.1007/s10856-005-5919-5
  21. Thanatvarakorn O, Nakashima S, Sadr A, Prasansuttiporn T, Ikeda M, Tagami J. In vitro evaluation of dentinal hydraulic conductance and tubule sealing by a novel calcium-phosphate desensitizer. J Biomed Mater Res B Appl Biomater. 2013;101(2): 303-9. https://doi.org/10.1002/jbm.b.32840
  22. Garberoglio R, Brännström M. Scanning electron microscopic investigation of human dentinal tubules. Arch Oral Biol 1976;21(6):355-62. https://doi.org/10.1016/S0003-9969(76)80003-9
  23. Huang M, Hill RG, Rawlinson SC. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): A therapeutic role for Sr in dentine repair? Acta Biomater. 2016; 38: 201-11. https://doi.org/10.1016/j.actbio.2016.04.037