A comprehensive review on electrospinning design, parameters and potential use of electrospun nanofibers in regenerative endodontics

Main Article Content

Sai Lakshmi Durga Indukuri
Madhu Varma K
Girija S. Sajjan
Kalyan Satish R
Sindhu D
Sowmya M


Electrospinning is a versatile technique that has gathered interest due to its ability to fabricate nano and microscale fibres with unique properties of high surface area and fibrous porosity. This technique has been widely used in the late 20th (1990) and early 21st (2000) centuries. Since the beginning of its use, significant improvements have been made in the design, materials used, and fibres produced. The electrospinning technique is used to fabricate a material with therapeutic properties as it allows the researchers to incorporate various anti-microbial agents to different polymers without altering the chemical characteristics
of polymers.
The production of nanofibres through electrospinning is affected by many operating parameters. It is, therefore, essential to know various parameters and processes that aid in fabricating the desired fibre assemblies. The nanofibres remain an essential division of biomaterials due to a wide range of biomedical
applications. Nanofibres have unique properties such as protein absorption, binding sites to cell receptors, can provide maximum volume fraction by controlling fibres' alignment and orientation hence improving the material properties like surface morphology, porosity, and geometry.
Recent trends in endodontics, encourage regenerative therapy for the treatment of necrotic immature permanent teeth for root development and maturation. In this context, efficient disinfection of the root canal system is a crucial step. Existing chemical irrigating solutions (for eg., NaOCl) and antibiotic pastes (for eg., Triple antibiotic paste) usage at higher doses showed toxic results on the pulpal stem cells. Therefore, it was found to be beneficial to use a nanofibre-based intracanal drug delivery construct to release antibiotics at lower, yet anti-microbially effective concentrations.
This review aims to discuss the basic concepts of electrospinning and its potential application in regenerative endodontics along with various parameters, which affect the fibre morphology and properties of produced nanofibres.

Article Details

How to Cite
Indukuri, S. L. D., K, M. V., Sajjan, G. S., R, K. S., D, S., & M, S. (2020). A comprehensive review on electrospinning design, parameters and potential use of electrospun nanofibers in regenerative endodontics. International Journal of Dental Materials, 2(2), 37–44. https://doi.org/10.37983/IJDM.2020.2202 (Original work published August 2, 2021)
Author Biographies

Madhu Varma K, Vishnu Dental College

Professor, Department of Conservative Dentistry and Endodontics

Girija S. Sajjan, Vishnu Dental College

Professor, Department of Conservative Dentistry and Endodontics

Kalyan Satish R, Vishnu Dental College

Professor, Department of Conservative Dentistry and Endodontics

Sindhu D, Vishnu Dental College

Postgraduate Student, Department of Conservative Dentistry and Endodontics

Sowmya M, Vishnu Dental College

Postgraduate Student, Department of Conservative Dentistry and Endodontics


  1. Zeleny J. The electrical discharge from liquid points and a hydrostatic method of measuring the electric intensity at their surfaces. J. Phy.1914; 69-91. https://doi.org/10.1103/PhysRev.3.69
  2. Teo WE, Ramakrishna S. A review on electrospinning design and nano- assemblies. Nanotechnology. 2006; 17(14): 89-106. https://doi.org/10.1088/0957-4484/17/14/R01
  3. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibres: Methods, materials, and applications. Chemical reviews. 2019;119(8):5298-415. https://doi.org/10.1021/acs.chemrev.8b00593
  4. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibres: new concepts, materials, and applications. Accounts of chemical research. 2017;50(8):1976-87. https://doi.org/10.1021/acs.accounts.7b00218
  5. Cooley JF, Charles S Farquhar, Ambrose Eastman, assignee. Apparatus for electrically dispersing fluids. United States patent US. 1902; 692-631.
  6. Morton WJ. Method of dispersing fluids US Patent Specification.1902; 705691.
  7. Yadav TC, Srivastava AK, Mishra P, Singh D, Raghuwanshi N, Singh NK, Singh AK, Tiwari SK, Prasad R, Pruthi V. Electrospinning: An Efficient Biopolymer-Based Micro-and Nanofibres Fabrication Technique. In Next-Generation Biomanufacturing Technologies, American Chemical Society. 2019; 209-241. https://doi.org/10.1021/bk-2019-1329.ch010
  8. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibres. In Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting. 1993;1698-1703.
  9. Greiner A, Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 2007; 46: 5670-5703. https://doi.org/10.1002/anie.200604646
  10. Vaishali A, Varma KM, Bhupathi PA, Bharath TS, Ramesh MV, Varma PV. In vitro evaluation of antimicrobial efficacy of 2% chlorhexidine loaded electrospun nanofibres. J Pierre Fauchard Acad (India Section). 2017;31(2-4):105-8. https://doi.org/10.1016/j.jpfa.2017.01.006
  11. Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW. A short review: Recent advances in electrospinning for bone tissue regeneration. J Tissue Eng. 2012;3(1):1-11. https://doi.org/10.1177/2041731412443530
  12. Jozsef Bako, Farkas Kerenyi, Lajos Daroczi, Csaba Hegedus. Biodegradable polymer-based electrospun nanofibres for dental applications. J Biotechnol Biomater. 2018; 8: 87-88.
  13. Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310(5751):1135-8. https://doi.org/10.1126/science.1106587
  14. Zhang X, Reagan MR, Kaplan, DL. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 2009;61: 988-1006. https://doi.org/10.1016/j.addr.2009.07.005
  15. Reneker DH, Yarin AL. Electrospinning Jets and Polymer Nanofibres. Polymer 2008; 49: 2387?2425. https://doi.org/10.1016/j.polymer.2008.02.002
  16. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibres. J App Polymer Sci. 2005;96(2):557-569. https://doi.org/10.1002/app.21481
  17. Taylor G. Electrically Driven Jets. Proc. R. Soc. Lond. A Math. Phys. Sci. 1969; 313: 453-475. https://doi.org/10.1098/rspa.1969.0205
  18. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001; 42:261-272. https://doi.org/10.1016/S0032-3861(00)00250-0
  19. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002; 3: 232-238.
  20. Zeleny J. The role of surface instability in electrical discharges from drops of alcohol and water in air at atmospheric pressure. J Frankl Inst 1935; 219: 659-675. https://doi.org/10.1016/S0016-0032(35)91985-8
  21. Garg K, Bowlin GL. Electrospinning jets and nanofibrous structures. Biomicrofluidics 2011; 5: 013403-1- 013403-18. https://doi.org/10.1063/1.356709
  22. Megelski S, Stephens JS, Chase D.B, Rabolt JF. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002; 35: 8456-8466. https://doi.org/10.1021/ma020444a
  23. Seo SJ, Kim HW, Lee JH. Electrospun nanofibers applications in dentistry. Journal of Nanomaterials. 2016; 1-7. https://doi.org/10.1155/2016/5931946
  24. Tong HW, Wang M. Effects of Processing Parameters on the Morphology and Size of Electrospun PHBV Micro-and Nano-Fibers. Key Eng. Mater. 2007; 334:1233-1236. https://doi.org/10.4028/www.scientific.net/KEM.334-335.1233
  25. Jeun J, Kim Y, Lim Y, Choi J, Jung C, Kang P, Nho Y. Electrospinning of Poly(L-lactide-co-D,L-lactide). J. Ind. Eng. Chem. 2007; 13: 592-596.
  26. Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, Sefat F. Potential of electrospun nanofibers for biomedical and dental applications. Materials. 2016;9(2):73. https://doi.org/10.3390/ma9020073
  27. Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003; 3: 1167-1171. https://doi.org/10.1021/nl0344256
  28. Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004; 58 (3-4);493-7. https://doi.org/10.1016/S0167-577X(03)00532-9
  29. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC. Ndesendo VM. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013; 1-22. https://doi.org/10.1155/2013/789289
  30. Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomater. 2008; 29: 1989-2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
  31. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 2007; 27: 504-509. https://doi.org/10.1016/j.msec.2006.05.019
  32. Ioannis, S.C. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review. J. Mater. Process. Technol. 2005; 167: 283-293. https://doi.org/10.1016/j.jmatprotec.2005.06.053
  33. Fong H, Chun I, Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer.1999; 40: 4585-4592. https://doi.org/10.1016/S0032-3861(99)00068-3
  34. Ramakrishna S, Fujihara K, Teo W, Lim T, Ma Z. Electrospinning process. In An Introduction to Electrospinning and Nanofibers; World Scienti?c, Singapore. 2005;135-137. https://doi.org/10.1142/5894
  35. Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005; 46: 4799-4810. https://doi.org/10.1016/j.polymer.2005.04.021
  36. Huang L, Nagapudi K, Apkarian RP, Chaikof EL. Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed. 2001; 12: 979-993. https://doi.org/10.1163/156856201753252516
  37. Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys. 2004; 205: 2327-2338. https://doi.org/10.1002/macp.200400225
  38. Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. polymer. 2004 ;45(9):2959-66. https://doi.org/10.1016/j.polymer.2004.03.006
  39. Pelipenko J, Kristl J, Jankovic' B, Baumgartner S, Kocbek P. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int. J. Pharm. 2013; 456 (1):125-134. https://doi.org/10.1016/j.ijpharm.2013.07.078
  40. De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, De Clerck K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2004; 44 (5):1357-1362. https://doi.org/10.1007/s10853-008-3010-6
  41. Galler KM. Clinical procedures for revitalization: current knowledge and considerations. Int Endodon J. 2016;49(10):926-36. https://doi.org/10.1111/iej.12606
  42. Diogenes A, Ruparel NB, Shiloah Y, Hargreaves KM. Regenerative endodontics: a way forward. J Am Dent Assoc. 2016;147(5):372-80. https://doi.org/10.1016/j.adaj.2016.01.009
  43. Albuquerque MT, Valera MC, Nakashima M, Nor JE, Bottino MC. Tissue-engineering based strategies for regenerative endodontics. J Dent Res 2014;93(12):1222-31. https://doi.org/10.1177/0022034514549809
  44. Diogenes A, Henry MA, Teixeira FB, Hargreaves KM. An update on clinical regenerative endodontics. Endod Top 2013;28(1):2-23. https://doi.org/10.1111/etp.12040
  45. Iwaya SI, IkawaM, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol. 2001;17:185-7. https://doi.org/10.1034/j.1600-9657.2001.017004185.x
  46. Kontakiotis EG, Filippatos CG, Agrafioti A. Levels of evidence for the outcome of regenerative endodontic therapy. J Endod. 2014;40:1045-53. https://doi.org/10.1016/j.joen.2014.03.013
  47. Galler KM, D'Souza RN, Federlin M, Cavender AC, Hartgerink JD, Hecker S, et al. Dentin conditioning codetermines cell fate in regenerative endodontics. J Endod. 2011; 37:1536-41. https://doi.org/10.1016/j.joen.2011.08.027
  48. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod. 2012;38:1372-5. https://doi.org/10.1016/j.joen.2012.06.018
  49. Althumairy RI, Teixeira FB, Diogenes A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. J Endod. 2014;40:521-5. https://doi.org/10.1016/j.joen.2013.11.008
  50. Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y. Bioactive nano fibrous scaffolds for regenerative endodontics. J Dent Res. 2013;92: 963-9. https://doi.org/10.1177/0022034513505770
  51. Wang J, Windbergs M. Controlled dual drug release by coaxial electrospun fibers-Impact of the core fluid on drug encapsulation and release. Int J Pharm. 2019; 556: 363-371. https://doi.org/10.1016/j.ijpharm.2018.12.026
  52. Pant B, Park M, Park SJ. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics. 2019;11(7):305. https://doi.org/10.3390/pharmaceutics11070305
  53. Porter ML, Munchow EA, Albuquerque MT, Spolnik KJ, Hara AT, Bottino MC. Effects of novel 3-dimensional antibiotic-containing electrospun scaffolds on dentin discoloration. J Endod. 2016; 42:106-12. https://doi.org/10.1016/j.joen.2015.09.013
  54. Albuquerque MT, Ryan SJ, Munchow EA, Kamocka MM, Gregory RL, Valera MC, et al. Antimicrobial effects of novel triple antibiotic paste-mimic scaffolds on Actinomyces naeslundii biofilm. J Endod. 2015; 41:1337-43. https://doi.org/10.1016/j.joen.2015.03.005
  55. Albuquerque MT, Valera MC, Moreira CS, Bresciani E, de Melo RM, Bottino MC. Effects of ciprofloxacin-containing scaffolds on enterococcus faecalis biofilms. J Endod. 2015; 41:710-4.
  56. https://doi.org/10.1016/j.joen.2014.12.025
  57. Kamocki K, Nör JE, Bottino MC. Effects of ciprofloxacin containing antimicrobial scaffolds on dental pulp stem cell viability-In vitro studies. Arch Oral Biol. 2015; 60:1131-7. https://doi.org/10.1016/j.archoralbio.2015.05.002
  58. Kamocki K, Nör JE, Bottino MC. Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics. Int Endod J. 2015; 48:1147-56. https://doi.org/10.1111/iej.12414
  59. Bottino MC, Yassen GH, Platt JA, Labban N, Windsor LJ, Spolnik KJ, Bressiani AH. A novel three?dimensional scaffold for regenerative endodontics: materials and biological characterizations. J Tissue Eng Regener Med. 2015; 9(11):116-123. https://doi.org/10.1002/term.1712
  60. Kim GH, Park YD, Leeetal SY. Odontogenic stimulation of human dental pulp cells with bioactive nano-composite fiber. J Biomater Appl. 2015; 29(6):854-866. https://doi.org/10.1177/0885328214546884
  61. Bae WJ, Min KS, Kim JJ, Kim JJ, Kim HW, Kim EC, Odontogenic responses of human dental pulp cells to collagen/nano-bioactive glass nanocomposites. Dent Mater. 2012;28(12):1271-1279. https://doi.org/10.1016/j.dental.2012.09.011
  62. Kim JJ, Bae WJ, Kim JM, Kim JJ, Lee EJ, Kim HW, Kim EC. Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells. J Biomater Appl 2014; 28: 1069-1078. https://doi.org/10.1177/0885328213495903
  63. Bottino MC, Albuquerque MT, Azabi A, Münchow EA, Spolnik KJ, Nör JE, Edwards PC. A novel patient?specific three?dimensional drug delivery construct for regenerative endodontics. J Biomed Mater Res Part B: Applied Biomater. 2019;107(5):1576-86. https://doi.org/10.1002/jbm.b.34250
  64. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 2004; 98:47-56. https://doi.org/10.1016/j.jconrel.2004.04.009

Most read articles by the same author(s)