An overview of applications of PEEK polymer in prosthodontics.
Main Article Content
Abstract
The rapid evolution of computer-aided design and computer-aided manufacturing (CAD-CAM) led to the introduction of newer materials that could be precisely milled for the fabrication of dental prostheses. PEEK (PolyEtherEtherKetone) has been explored for a number of applications for clinical dentistry, including removable dental prostheses, fixed dental prostheses, implant-supported prostheses, resin-bonded fixed dental prostheses and implant-retained overdentures. The major beneficial property of PEEK is its lower Young's modulus, and as elastic as bone, providing a cushioning effect and reduction of stress transferred to abutment teeth. It is a material with high biocompatibility, good mechanical properties, high-temperature resistance, chemical stability, polishability, good wear resistance, and high bond strength with luting cements. Further, PEEK is also recommended for a wide range of CAD-CAM fabricated fixed and removable prostheses, fabrication of occlusal splints, intra-radicular posts, implant abutments and provisional restorations. PEEK material shows a property of radiolucency, which is advantageous for the evaluation of both osseointegration and tissue surrounding the implant on computed tomography. Considering these properties, PEEK is increasingly being used in implantology.
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016;60:12-9. https://doi.org/10.1016/j.jpor.2015.10.001
Toth JM, Wang M, Estes BT, Scifert JL, Seim III HB, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomater. 2006;27(3):324-34. https://doi.org/10.1016/j.biomaterials.2005.07.011
Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomater. 2007;28:4845-69. https://doi.org/10.1016/j.biomaterials.2007.07.013
Rees JS, Jacobsen PH. The elastic moduli of enamel and dentine. Clin Mater. 1993;14(1):35-9. https://doi.org/10.1016/0267-6605(93)90045-9
Skinner HB. Composite technology for total hip arthroplasty. Clin Orthop Relat Res. 1988 (235):224-36. https://doi.org/10.1097/00003086-198810000-00022
Vaezi M, Yang S. A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network. Int J Bioprinting. 2015 ;1(1): 66-76. https://doi.org/10.18063/IJB.2015.01.004
Zoidis P, Papathanasiou I, Polyzois G. The Use of a modified poly ether ether ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report. J Prosthet Dent 2015;25:580-84. https://doi.org/10.1111/jopr.12325
Xin H, Shepherd DE, Dearn KD. Strength of poly-ether-ether-ketone: Effects of sterilisation and thermal ageing. Polymer Testing. 2013;32(6):1001-5. https://doi.org/10.1016/j.polymertesting.2013.05.012
Sheiko N, Kékicheff P, Marie P, Schmutz M, Jacomine L, Perrin-Schmitt F. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications. Appl Surf Sci. 2016;389:651-65. https://doi.org/10.1016/j.apsusc.2016.07.159
Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J Oral Implantol. 2013;39(6):743-9. https://doi.org/10.1563/AAID-JOI-D-11-00002
Garcia-Gonzalez D, Rusinek A, Jankowiak T, Arias A.Mechanical impact behavior of polyether-ether-ketone (PEEK). Compos Struct. 2015;124:88-99. https://doi.org/10.1016/j.compstruct.2014.12.061
Kurtz SM, editor PEEK Biomaterials Handbook., William Andrew Publishing.2019:263-280. https://doi.org/10.1016/B978-0-12-812524-3.00015-6
Zhou L, Qia Y, Zhu Y, Liu H, Gan K, Guo J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent Mater 2014;30:e209-15. https://doi.org/10.1016/j.dental.2014.03.011
Rahmitasari F, Ishida Y, Kurahashi K, Matsuda T, Watanabe M, Ichikawa T. PEEK with reinforced materials and modifications for dental implant applications. Dent J. 2017;5(4):35. https://doi.org/10.3390/dj5040035
Leonhardt A, Gröndahl K, Bergström C, Lekholm U. Long-term follow-up of osseointegrated titanium implants using clinical, radiographic and microbiological parameters. Clin Oral Implants Res 2002;13:127-132. https://doi.org/10.1034/j.1600-0501.2002.130202.x
AL Rabab'ah M, Hamadneh W, Alsalem I, Khraisat A, Abu Karaky A. Use of High Performance Polymers as Dental Implant Abutments and Frameworks: A Case Series Report. J Prosthodont. 2019;28(4):365-372. https://doi.org/10.1111/jopr.12639
Karunagaran S, Paprocki GJ, Wicks R, & Markose S. A review of implant abutments-abutment classification to aid prosthetic selection. J Tenn Dent Assoc 2013;93(2):18-23. https://doi.org/10.1111/jopr.12161
Zoidis P, &Papathanasiou I. Modified PEEK resin-bonded fixed dental prosthesis as an interim restoration after implant placement. J Prosthet Dent. 2016;116(5):637-641. https://doi.org/10.1016/j.prosdent.2016.04.024
Blatz MB, et al. Zirconia abutments for single-tooth implants--rationale and clinical guidelines. J Oral Maxillofac Surg. 2009;67(11):74-81. https://doi.org/10.1016/j.joms.2009.07.011
Gomes AL, J. Montero, Zirconia implant abutments: a review. Med Oral Patol Oral Cir Bucal 2011;16(1):e50-55. https://doi.org/10.4317/medoral.16.e50
Grupp TM, Giurea A, Miehlke RK, et al. Biotribology of a new bearing material combination in a rotating hinge knee articulation. Acta Biomater. 2013; 9:7054–7063. https://doi.org/10.1016/j.actbio.2013.02.030
Lee KS, Shin JH, Kim JE, et al. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis [published correction appears in Biomed Res Int. 2017;2017:7196847]. Biomed Res Int. 2017;2017:1373127. https://doi.org/10.1155/2017/1373127
Maekawa M, Kanno Z, Wada T, Hongo T, Doi H, Hanawa T, et al. Mechanical properties of orthodontic wires made of super engineering plastic. Dent Mater J. 2015;34:114–9. https://doi.org/10.4012/dmj.2014-202
Wiesli MG, &Özcan M. High-performance polymers and their potential application as medical and oral implant materials: a review. Implant Dent. 2015; 24(4):448-457. https://doi.org/10.1097/ID.0000000000000285
Stephan A, et al. A wealth of possible applications for high-performance polymers. Quintessenz Zahntech 2013;(3):2-10.
Sarot JR, Contar CMM, da Cruz ACC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010;21:2079–85. https://doi.org/10.1007/s10856-010-4084-7
Koch F, Weng D, Kramer S, Biesterfeld S, Jahn- Eimermacher A, Wagner W. Osseointegration of one-piece zirconia implants compared with a titanium implant of identical design: a histomorphometric study in the dog. Clin Oral Implants Res. 2010;21:350–6. https://doi.org/10.1111/j.1600-0501.2009.01832.x