Biodegradable materials in dentistry: A comprehensive review of current trends


Main Article Content

Meena Lakshmi Reddy Kambala
Swetha Reddy Dalli
https://orcid.org/0009-0002-8810-9686

Pradeep Kandikatla
https://orcid.org/0000-0002-4286-6633

Anil Kumar Marna
https://orcid.org/0009-0006-8199-4706

Abstract

The dental industry has witnessed a paradigm shift towards biodegradable materials, driven by the need for sustainable and environmentally friendly solutions. Biodegradable materials in dentistry offer a promising alternative to traditional non-degradable materials, providing many benefits for patients, clinicians, and the environment. However, challenges persist, including limited durability and standardized regulations. This review article explores the current state of biodegradable materials in dentistry, including their applications, advantages, and limitations. Further, this article discussed the use of biodegradable materials in dental implants, restoratives, and temporary devices, as well as their potential for tissue engineering and regenerative dentistry. Additionally, the discussion covered the clinical significance, emphasizing the possibility of biodegradable materials transforming dental procedures and reducing their environmental footprint. As the field continues to evolve, biodegradable materials are poised to play a vital role in shaping the future of sustainable dentistry.

Article Details


How to Cite
Kambala, M. L. R., Dalli, S. R., Kandikatla, P., & Marna, A. K. (2024). Biodegradable materials in dentistry: A comprehensive review of current trends. International Journal of Dental Materials, 6(3), 70–76. https://doi.org/10.37983/IJDM.2024.6304
Author Biographies

Meena Lakshmi Reddy Kambala, Vishnu Dental College

Postgraduate Student, Department of Orthodontics and Dentofacial Orthopaedics, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India.

Swetha Reddy Dalli, Vishnu Dental College

Postgraduate Student, Department of Orthodontics and Dentofacial Orthopaedics, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India.

Pradeep Kandikatla, Vishnu Dental College

Associate Professor, Department of Orthodontics and Dentofacial Orthopedics, Vishnu Dental College, Bhmavaram, Andhra Pradesh, India.

Anil Kumar Marna, Vishnu Dental College

Postgraduate Student, Department of Orthodontics and Dentofacial Orthopaedics, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India.

References

  1. Payne, Laura. Biodegradability. Encyclopedia Britannica, 13 Aug. 2024,
  2. Dong L, Tong X, Li X, Zhou J, Wang S, Liu B. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J Clean Prod. 2019;210:1562-78. https://doi.org/10.1016/j.jclepro.2018.10.291
  3. Crommelin DJ, Mastrobattista E, Hawe A, Hoogendoorn KH, Jiskoot W. Shifting paradigms revisited: biotechnology and the pharmaceutical sciences. J Pharm Sci. 2020;109(1):30-43. https://doi.org/10.1016/j.xphs.2019.08.010
  4. Sudhakar MP, Nallasamy VD, Dharani G, Buschmann AH. Applications of seaweed biopolymers and its composites in dental applications. J Appl Biol Biotechnol 2024;12:62-8. https://doi.org/10.7324/JABB.2024.143201
  5. Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics. 2020;5(3):34. https://doi.org/10.3390/biomimetics5030034
  6. Ali GA, Thalji MR, Makhlouf AS. Biodegradable materials: fundamentals, importance, and impacts. In Handbook of biodegradable materials 2022 Sep 17 (pp. 1-16). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-83783-9_74-1
  7. Modrák M, Trebu?ová M, Balogová AF, Hudák R, Živ?ák J. Biodegradable materials for tissue engineering: development, classification and current applications. J Funct Biomater. 2023;14(3):159. https://doi.org/10.3390/jfb14030159
  8. Chen IH, Lee TM, Huang CL. Biopolymers hybrid particles used in dentistry. Gels. 2021;7(1):31. https://doi.org/10.3390/gels7010031
  9. Tomer AK, Kumari S, Rastogi D, Cecilia LL, Singh S, Tyagi A. Bioceramics in Endodontics-A Review. Int J Appl Dent Sci. 2020;6(3):588-94. https://doi.org/10.22271/oral.2020.v6.i3i.1012
  10. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F. Application of bioplastics for food packaging. Trends Food Sci Tech. 2013;32(2):128-41. https://doi.org/10.1016/j.tifs.2013.06.003
  11. Shrivastava A, Dondapati S. Biodegradable composites based on biopolymers and natural bast fibres: A review. Mater Today: Proceedings. 2021;46:1420-8. https://doi.org/10.1016/j.matpr.2021.02.652
  12. Suárez L, Castellano J, Díaz S, Tcharkhtchi A, Ortega Z. Are natural-based composites sustainable? Polymers. 2021;13(14):2326. https://doi.org/10.3390/polym13142326
  13. Zheng YF, Gu XN, Witte FJ. Biodegradable metals. Mater Sci Eng: R: Reports. 2014;77:1-34. https://doi.org/10.1016/j.mser.2014.01.001
  14. Khan AR, Grewal NS, Zhou C, Kunshan Y, Zhang HJ, Jun Z. Recent advances in biodegradable metals for implant applications: exploring in vivo and in vitro responses. Results in Engineering. 2023:101526. https://doi.org/10.1016/j.rineng.2023.101526
  15. Glatzmaier J, Wehrbein H, Peter D. Biodegradable implants for orthodontic anchorage. A preliminary biomechanical study. Eur J Orthodont. 1996;18(5):465-9. https://doi.org/10.1093/ejo/18.5.465
  16. Mahmood HT, Kamal AT, Khan B, Fida M. Application of new biomedical materials in orthodontic appliances. Journal of the College of Physicians and Surgeons Pakistan. 2019;29(7):654. https://doi.org/10.29271/jcpsp.2019.07.654
  17. Veseli E, Veseli K, Behluli E. Recyclable aligners. Br Dent J. 2024;236(5):360. https://doi.org/10.1038/s41415-024-7194-1
  18. Verma D, Sharma M, Goh KL, Jain S, Sharma H, editors. Sustainable Biopolymer Composites: Biocompatibility, Self-healing, Modeling, Repair and Recyclability. Woodhead Publishing; 2021 Sep 15.
  19. Kohli A, Patil AY, Hombalmath M. Next generation biodegradable material for dental teeth and denture base material: Vegetable peels as an alternative reinforcement in polymethylmethacrylate (PMMA). Sustain. Nat Fiber Compos. 2022;122:77-95. https://doi.org/10.21741/9781644901854-3
  20. LaBagnara Jr J. A review of absorbable suture materials in head & neck surgery and introduction of monocryl: a new absorbable suture. Ear, Nose Throat J. 1995;74(6):409-15. https://doi.org/10.1177/014556139507400609
  21. Tay FR, Pashley DH, Loushine RJ, Kuttler S, García-Godoy F, King NM, Ferrari M. Susceptibility of a polycaprolactone-based root canal filling material to degradation. Evidence of biodegradation from a simulated field test. Am J Dent. 2007;20(6):365.
  22. Siqueira Jr JF, Lopes H. Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Int Endod J. 1999;32(5):361-9. https://doi.org/10.1046/j.1365-2591.1999.00275.x
  23. Mohammadi Z, Dummer PM. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J. 2011;44(8):697-730. https://doi.org/10.1111/j.1365-2591.2011.01886.x
  24. Kishen A. Advanced therapeutic options for endodontic biofilms. Endod Topics. 2010;22(1):99-123. https://doi.org/10.1111/j.1601-1546.2012.00284.x
  25. Bhatia S, Bhatia S. Nanotechnology and its drug delivery applications. Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae. 2016:1-32. https://doi.org/10.1007/978-3-319-41129-3_1
  26. Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod. 2016;42(10):1417-26. https://doi.org/10.1016/j.joen.2016.05.021
  27. Elmsmari F, González Sánchez JA, Duran?Sindreu F, Belkadi R, Espina M, García ML, Sánchez?López E. Calcium hydroxide?loaded PLGA biodegradable nanoparticles as an intracanal medicament. Int Endod J. 2021;54(11):2086-98. https://doi.org/10.1111/iej.13603
  28. Love RM. Invasion of dentinal tubules by root canal bacteria. Endod Topics. 2004;9(1):52-65. https://doi.org/10.1111/j.1601-1546.2004.00078.x
  29. Kumar V, Gour S, Chaube RK, Chaube RK, Chaube SK, Tiwari M. Comparative Efficacy and Adaptability of Bioresorbable Plates with Titanium Mini plates in the Management of Mandibular Fractures. Clin Res Open Access. 2018;4(2):1-5.
  30. https://doi.org/10.16966/2469-6714.137
  31. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly (lactic acid) polymers. J Biomed Mater Res. 1971;5(3):169-81. https://doi.org/10.1002/jbm.820050305
  32. Enislidis G, Yerit K, Wittwer G, Köhnke R, Schragl S, Ewers R. Self-reinforced biodegradable plates and screws for fixation of zygomatic fractures. Jo Craniomaxillofac Surg. 2005;33(2):95-102. https://doi.org/10.1016/j.jcms.2004.10.006
  33. Landes CA, Kriener S, Menzer M, Kovàcs AF. Resorbable plate osteosynthesis of dislocated or pathological mandibular fractures: a prospective clinical trial of two amorphous L-/DL-lactide copolymer 2-mm miniplate systems. Plast Reconstr Surg. 2003;111(2):601-10. https://doi.org/10.1097/01.PRS.0000041942.36666.4F
  34. Kanno T, Sukegawa S, Furuki Y, Nariai Y, Sekine J. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jap Dent Sci Rev. 2018;54(3):127-38. https://doi.org/10.1016/j.jdsr.2018.03.003
  35. Pesode P, Barve S. Magnesium alloy for biomedical applications. In Advanced Materials for Biomechanical Applications 2022 May 30 (pp. 133-158). CRC Press. https://doi.org/10.1201/9781003286806-7
  36. Vujovi? S, Desnica J, Staniši? D, Ognjanovi? I, Stevanovic M, Rosic G. Applications of biodegradable magnesium-based materials in reconstructive oral and maxillofacial surgery: a review. Molecules. 2022;27(17):5529. https://doi.org/10.3390/molecules27175529
  37. Kanno T, Sukegawa S, Furuki Y, Nariai Y, Sekine J. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jap Dent Sci Rev. 2018;54(3):127-138. https://doi.org/10.1016/j.jdsr.2018.03.003
  38. Godavitarne C, Robertson A, Peters J, Rogers B. Biodegradable materials. Orthop Trauma. 2017;31(5):316-20. https://doi.org/10.1016/j.mporth.2017.07.011